Courses

Please click on course titles below to see course descriptions.

Sustainability Management courses offered in Spring 2014
Complete listing of Sustainability Management program courses

ARCH A4623. Sustainable Futures. 3 pts.

Description

It is crucial to understand now that we are all designers. Every square millimeter of the planet and its terrestrial, aquatic, and climatic systems has been made and remade by human hands. The question becomes, what is your design expertise? The Earth Institute / Columbia GSAPP forum on the future of the built environment explores ideas of sustainable design and the future of the city, drawing from the deep and diverse experience of the Earth Institute and the Graduate School of Architecture, Planning and Preservation. The aim of the forum is to bring together the realms of science and design to address complex questions of environment and development with fresh thinking and a creative approach grounded in research, experimentation and pilot projects. We will ask how to address sustainability on global, regional, and local scales - with a focus on the role of cities and on ideas that work.

Back to Top

ARCH A6170. Architecture and the Sustainable Built Environment. 3 pts.

Description

The purpose of the course will be to familiarize students with core architectural design strategies and mechanical / technical systems that can and will make existing facilities or new ones more resource and task efficient, all while creating an architectural environment that is, for its occupants, thermally comfortable, psychologically affective, sustainably instructive and, with any luck, architecturally poetic.

To be successful, a sustainable building must be an inspired and inspirational combination of architecture and sustainable science. The course will therefore focus on how the principals and technical details of climatic analysis and thermal comfort can, in combination with a building’s program, create a logical framework that can creatively and rationally guide the development of a sustainable building.

While many of the sustainable strategies explored apply to both existing and new construction, the focus in this course will be on new buildings. The course requires no previous experience with architecture, sustainable design or climatic analysis. Though many of the topics will be technical, students will not be required to perform detailed calculation of heat loss or solar gain.

Back to Top

SUMA K4020. Cost Benefit Analysis. 3 pts.

Description

This course is about cost-benefit analysis and the economic evaluations of policies and projects. Cost benefit analysis (CBA) consists of a comprehensive set of techniques used to evaluate government programs. It is now routinely applied in such program areas as transportation, water projects, health, training and education, criminal justice, environmental protection, urban policy and even in the international arena such as foreign direct investment. Many of the techniques of CBA can also be applied to private sector decision-making. The objective of CBA is to determine whether the benefits of a particular program, policy or decision outweigh its costs. The techniques used to determine this are sometimes quite simple, but on other, increasingly frequent occasions are highly sophisticated. Sophisticated cost benefit studies are based on a framework that utilizes the basic concepts of economic theory. In addition, statistical and econometric analyses are often needed to estimate program effects from diverse available data. The course has two parts: methodology and practice. The goal is for students to be practically adept to undertake an independent cost-benefit analysis. This course satisfies the MS in Sustainability Management program's curriculum requirement in economics.

Back to Top

SUMA K4033. Decision Models and Management. 3 pts.

Description

This course provides an introduction to computer-based models for decision-making. The emphasis is on models that are widely used in diverse industries and functional areas, including finance, accounting, operations, and marketing. Applications will include advertising planning, revenue management, asset-liability management, environmental policy modeling, portfolio optimization, and corporate risk management, among others.

The applicability and usage of computer-based models have increased dramatically in recent years, due to the extraordinary improvements in computer, information and communication technologies, including not just hardware but also model-solution techniques and user interfaces. Twenty years ago working with a model meant using an expensive mainframe computer, learning a complex programming language, and struggling to compile data by hand; the entire process was clearly marked "experts only." The rise of personal computers, friendly interfaces (such as spreadsheets), and large databases has made modeling far more accessible to managers. Information has come to be recognized as a critical resource, and models play a key role in deploying this resource, in organizing and structuring information so that it can be used productively. This course satisfies the M.S. in Sustainability Management program's quantitative analysis curriculum area requirement.

Back to Top

SUMA K4035. Greenhouse Gas (GHG) Emissions: Measuring and Minimizing the Carbon Footprint. 3 pts.

Description

This course provides students with the knowledge and skills to account for and manage greenhouse gas (GHG) emissions, which contribute to global climate change. The course will address the importance of using estimation techniques to create GHG emissions inventories for organizations as well as for economic activities, such as transportation. The course will provide students an understanding of the protocols that govern the practice of carbon accounting, and the standards by which GHG emissions inventories are verified and disclosed to the public. Moreover, the course will help students understand how to use carbon accounting as the basis for developing and prioritizing emissions reduction strategies for the purpose of mitigating climate change risks.

Back to Top

SUMA K4100. Sustainability Management. 3 pts.

Description

This introductory course in the program discipline will begin by clearly defining what sustainability management is and determining if a sustainable economy is actually feasible. Students will learn to connect environmental protection to organizational management by exploring the technical, financial, managerial, and political challenges of effectively managing a sustainable environment and economy. This course is taught in a case-based format and will seek to help students learn the basics of management, environmental policy and sustainability economics.

Sustainability management matters because we only have one planet, and we must learn how to manage our organizations in a way that ensures that the health of our planet can be maintained and bettered. This course is designed to introduce students to the field of sustainability management. It is not an academic course that reviews the literature of the field and discusses how scholars thing about the management of organizations that are environmentally sound. It is a practical course organized around the core concepts of sustainability.

Each week students will read one or two case studies and some background material designed to help students answer the questions posed at the end of each case exercise. The cases will always pose practical issues for decision makers to address—but issues that are best addressed with a firm grounding in the literature of management and sustainability. This course will be offered in both the fall and the spring. In the fall the instructor is Steven Cohen and in the spring the instructor is Howard Apsan.

Back to Top

SUMA K4119. Empirical Approaches to Building Energy Assessment. 3 pts.

Description

The “built environment” includes more than the bricks and mortar (and other materials and systems) that make up the buildings we inhabit. It also includes the environmental forces acting on a building, from gravity and weather to urban stresses, and the way we humans interact in the spaces we make for ourselves. A full understanding of building energy assessment should take all of this into account. This approach includes complexities and contradictions that neither digital modeling nor exclusively bricks-and-mortar analyses alone can fully apprehend.

Back to Top

SUMA K4120. Environmental Conflict Resolution Strategies. 3 pts.

Description

Conflict and the environment are increasingly connected in the modern world, from communities in conflict over environmental problems, to natural resource exploitation fueling civil wars, to sustainable development in post-conflict environments, to treaties on climate change and carbon trading. This course explores the relationship between the environment and conflict at three different levels of analysis: community, national and international. The aim is to deepen understanding of this relationship through the use of case studies and the application of analytical models in an atmosphere of experiential learning.

Back to Top

SUMA K4130. Sustainable Cities. 3 pts.

Description

This course prepares students to understand, analyze, and develop policies and procedures to address sustainability issues faced by urban centers in the developed and developing world, their decision-makers, and inhabitants. Enrolled students are assumed to have had no previous in-depth exposure to sustainable urban development and urban planning. By the end of the course, students will have learned the following skills necessary to develop strategies and related actions to enhance sustainability of cities: identify and support good practices in green and efficient urban development and planning; develop policies and foster technologies used to promote energy efficiency and reduced GHG emissions from buildings and transportation; develop policies and foster technologies necessary to ensure access to clean water; develop policies and foster technologies necessary for the effective collection, disposal, and possible re-use of waste; create approaches to climate change adaptation measures undertaken by cities; develop, track, and analyze sustainability metrics and indicators for urban centers. This course can also be counted toward Area 1: Integrative Sustainability Management.

Back to Top

SUMA K4135. Sustainable Cities. 3 pts.

Description

Best practice in energy management will always involve some level of complex engineering to survey existing conditions and predict energy savings from various improvement options. Sustainability managers need to understand how to manage and quality control that analysis and to translate the opportunity it reveals to decision makers within their organization. This class seeks to empower students to do that by providing an understanding of building systems and methods for quantitatively analyzing the performance of alternatives. At the end of this course, students will be able to be able to analyze the energy performance of an organization’s buildings and operations in order to understand how it can reduce resource utilization and environmental impact. This class requires an understanding of Microsoft Excel and an enthusiasm for quantitative analysis. Although there are no prerequisites for the class, an ability to do some math is required. If you are not interested in dealing with technical information, this class is not for you.

Back to Top

SUMA K4140. Sustainability Science. 3 pts.

Description

Global environmental threats have suddenly become part of our everyday life, both in the form of news on natural disasters in different parts of the world and through a series of new scientific discoveries. Scientific knowledge about our planet a s a system in which there is an interplay between the atmosphere, oceans, and land surfaces has increased dramatically in recent decades, In step with that development it is becoming progressively clearer that our political and economic systems must take these global challenges seriously.

Sustainable development was launched 20 years ago as society’s response to both to conventional social problems, such as poverty, conflicts and ill-health, and how to the new global environmental problems, such as climate change, the loss of biological diversity, water shortage and changes in land-use. That means that sustainability science is a broad scientific field which studies integrated social and natural systems, processes and structures and in which the objective of knowledge is the sustainable development of society. This interdisciplinary course seeks to provide a general overview in sustainability science and to help students develop new knowledge in order to better understand society’s role as communities beginning transitioning towards sustainable development. Topics covered may include: Ecology, Ecosystems and Biodiversity, Human Populations and Development, Water: Hydrologic Cycle and Human Use, Soil: Foundation for Land Ecosystems, Traditional and New Energy Sources, Environmental Hazards and Human Health, Global Climate Change, Atmospheric Pollution, Water Pollution and Its Prevention, and Sustainable Development. This course will be offered in the fall and will be taught by Katherine McFadden.

Back to Top

SUMA K4142. Sustainable Finance. 3 pts.

Description

This course is an introduction to how sustainability/ESG (economic, environmental, social & governance) issues have become financially material to the global credit, underwriting, insurance, risk management, venture capital and asset management capital markets. These issues have a direct impact on risk exposure and the quality of public, private and government debt/equity investments. By the end of the course, students should understand how these issues affect investment decisions made by institutional investors, corporate lenders, insurance companies, asset management funds, hedge funds, venture capitalists and retail investors, as well as business decisions made by corporate managers. They will be exposed to the global sources of environmental/sustainability corporate performance information, how "best-in-class" environmental investment relates to, and is different from, socially-responsible investing (SRI), and differences between European, North American and Asian markets. Risk management aspects of sustainable finance will be addressed, especially in regards to emerging finance areas such as carbon finance, corporate governance, sustainable development and agriculture/water development projects. SEC Reporting requirements for sustainability risks and opportunities, and the prospect of the issuance of "Integrated Corporate Reports" that combine financial and sustainability reporting will be discussed. The ethics of sustainability issues and their impact on management & finance will also be addressed.

This course satisfies the program's financial management requirement while giving students a foundation in how sustainability issues affect the various sectors of finance and financial approaches, and an understanding of how integrating sustainability principles and practices into finance can be used to make a business become more efficient, effective, reduce risks, create opportunities and provide competitive advantage, for both companies and financial firms alike. Students will gain the tools to evaluate, quantify and assess environmental, social and governance (ESG) metrics of companies as a way of differentiating investment choices, as part of understanding why non-financial metrics now represent 75-80% of the market value of publicly-traded companies. This course satisfies the M.S. in Sustainability Management program's general and financial management curriculum area requirement.

Back to Top

SUMA K4145.  Science of Sustainable Water.  3 pts.

Description

The sustainability of water resources is a critical issue facing society over the coming decades. Water resources are affected by changes not only in climate but also in population, economic growth, technological change, and other socioeconomic factors. In addition, they serve a dual purpose; water resources are critical to both human society and natural ecosystems. The objective of this course is to first provide students with a fundamental understanding of key hydrological processes. Students will then use this understanding to explore various sustainable strategies for integrated water resources management. Numerous case studies will be highlighted throughout the course to illustrate real world, practical challenges faced by water managers. Students will be asked to think critically and to use basic quantitative and management skills to answer questions related to sustainable water development. Considering the importance of water to society the understanding that students obtain from this course will be an essential part of their training in sustainable management.

Back to Top

SUMA K4165. Political Economy of Energy and Climate Change Policies. 3 pts.

Description

This course will present the challenges attached to the transition towards low carbon economies. Based on empirical data and experience, a discussion of the different policy instruments is proposed, along with an analysis of key stakeholder strategies. Specific attention will be given to the specificity of different contexts (developed, emerging and developing countries) and economic sectors in evaluating the efficiency and the effectiveness of alternative policy design in driving technological, economical and societal change. We will then explore the difficulty to build collective action at the global level, by revisiting the most significant moments in the history of negotiation, and discuss possible avenues forward. This course fulfils the M.S. in Sustainability Management Public Policy curriculum area requirement.

Back to Top

SUMA K4169. Sustainability Metrics. 3 pts.

Description

The course will focus on sustainability indicators, the process through which they were developed, and how they are used to shape policy and track progress. This course will examine the science and history of our current environmental crisis with a focus on the various policy initiatives and actions being taken globally and locally including the specific efforts of the C40 Cities (40 largest cities) to both mitigate greenhouse gas emissions and prepare for the impacts of climate change. The class will look at case studies from different cities around the world as well as New York City's efforts through PlaNYC while introducing the principles underlying sustainability indicators-including greenhouse gas inventory protocols-and how they are used to influence and shape policies and decisions, and will offer students hands-on experience with these tools.

The goal of this is to make students acquainted with the debate, challenges, and opportunities of a changing climate. The course will focus on the solutions and responses to the climate change challenges facing cities using real world and current examples. The course will survey a broad range of responses to climate change from international frameworks and global treaties to specific actions at the local level. Students will be required to critically evaluate what they have read and heard. In addition, the course will give students an opportunity to learn how to express their ideas verbally and in written form and conduct critical analysis of environmental data to develop and implement public policy.

Assignments will give students the opportunity to use their technical and analytical skills while understanding the real world applications that will be important to their future professional work as planners, policymakers, advocates, architects, designers, and/or environmentalists. This course satisfies the M.S. in Sustainability Management's quantitative analysis requirement.

Back to Top

SUMA K4170. Sustainable Operations. 3 pts.

Description

Manufacturing, logistics, and other operating facilities at the forefront of their industries know they must follow a path of continuous improvement in order to maintain a competitive advantage in the market place. In the 21st century, a production facility cannot maintain its competitive position or achieve continuous operating improvement without the successful implementation of strategic, well-designed, and well-implemented sustainability initiatives.

Sustainability improvements are critical at many points in an operation’s value chain, from initial product conception to production/manufacturing, distribution, and waste disposal. In today’s most successful companies, sustainability is taken into account in deciding on the location of a new facility and is engineered from the start into the product development, production, and distribution processes. In existing entities, process changes are regularly mandated in response to shifting market demands (new products or product attributes), efficiency opportunities (new process technologies), or cost reduction imperatives (materials or labor). Over the life of a production facility, changes in product attributes, business needs, and business processes have implications, whether intended or unintended, direct or indirect, in terms of raw material use, energy consumption, water use, greenhouse gas emissions, waste disposal, and ultimately, plant shutdown costs.

A sustainable, socially responsible, and financially-driven operation must develop, analyze, select, and implement measures that will help it capitalize on the opportunities for improved operating performance, and that will mitigate the inevitable unfavorable effects of business operations. This requires managers who can identify potential threats and challenges, develop strategies to address such circumstances, conduct the necessary quantitative and qualitative evaluations of competing alternatives, and make the necessary fact-based decisions. It also requires managers who can successfully articulate the necessary decisions to broad sets of stakeholders, from the facility manager to the chairman of the board, and from individual employees and their families to community organizations and governmental/regulatory agencies.

Back to Top

SUMA K4175. Global Environmental Markets. 3 pts.

Description

Harnessing the power of financial markets to address environmental challenges is not a new idea, yet it offers one of the most promising mechanisms to deal with many of the world’s most pressing issues including climate change, deforestation, acid rain, biodiversity and water. Environmental markets utilize transferable permits to control pollution, and have evolved from a little known policy tool to a broadly applied international program to address the largest global environmental challenges.

The course will examine the theory and practice of environmental markets and will consider why emissions can now be traded. Climate change, carbon markets and the international agreements that underpin carbon markets will be discussed. The class will also look at the role of the public sector, including various U.N. agencies, multilaterals such as the World Bank, and various United States regulatory agencies including the Environmental Protection Agency, as well as the part played by the private sector. The course will end with a look to the future, to the role of the developing world, to the direction that international negotiations are heading and to programs such as avoided deforestation (REDD).

Back to Top

SUMA K4180. Writing About Global Science for the International Media. 3 pts.

Description

This is an interdisciplinary workshop for scientists, future NGO workers and journalists seeking skills in communicating 21st century global science to the public. Scientists will be given journalism skills; journalists will learn how to use science as the basis of their story-telling.

The course is designed to give students exercises and real-world experiences in producing feature stories on global science topics. While most scientists and international affairs professionals have been trained to write in the style of peer-reviewed journals, we will focus on journalism techniques, learning how to translate global science into accessible true stories that reach wide audiences.

Science is performed by passionate individuals who use their intelligence and determination to seek answers from nature. By telling their histories and uncovering the drama of discovery, we believe that there are ways for science to be successfully communicated to readers who might otherwise fear it.

Back to Top

SUMA K4190. Economics of Sustainability Management. 3 pts.

Description

This course builds on core economics courses and addresses issues of environmental, resource and sustainable economics. It focuses on the interaction between markets and the environment; policy issues related to optimal extraction and pricing; property rights in industrial and developing countries and how they affect international trade in goods such as timber, wood pulp, and oil. An important goal of the class is to have students work in groups to apply economic concepts to current public policy issues having to do with urban environmental and earth systems. The use of the world's water bodies and the atmosphere as economic inputs to production are also examined. The economics of renewable resources is described and sustainable economic development models are discussed and analyzed. Some time will also be devoted to international trade and regulation, and industrial organization issues. Students not only learn economic concepts, but they will also learn how to explain them to decision-makers. The instructor will tailor this course to the skill level of the students in order to most effectively suit the needs of the class. This course will be offered in both the fall and spring and will be taught by Satyajit Bose..

Back to Top

SUMA K4195. Green Accounting. 3 pts.

Description

The course introduces practitioners of environmental science and sustainability management to a number of approaches to accounting for environmental costs in business and policy.  The course provides a basic introduction to financial accounting and analyzes the income statement, cash flow statement and the balance sheet using examples of cleantech and resource extraction companies.  Conventional cost and management accounting concepts for business entities are introduced, with a focus on accounting for waste, depletion and byproducts.  Green accounting methodologies with a systems focus such as life cycle analysis and sustainability metrics are presented.  Conventional national income accounting is introduced and critically evaluated, with a detailed examination of green accounting alternatives.  Worked examples and case studies are integral to each topic.  Students are assumed to have had no previous exposure to accounting.

Back to Top

SUMA K4193. Statistics for Sustainability Management. 3 pts.

Description

The course introduces practitioners of environmental science and sustainability management to the data analysis techniques and statistical methods which are indispensable to their work. The class teaches how to build statistical substantiation and to critically evaluate it in the context of environmental problems. The statistics topics and examples have been chosen for their special relevance to environmental problems, including applications in environmental monitoring, impact assessment, environmental valuation techniques and econometric analyses of sustainable development. Students are assumed to have had no previous exposure to statistics.

Back to Top

SUMA K4197. Financing the Green Economy: Markets, Business, and Politics. 3 pts.

Description

This finance course gives students a foundation in finance and financial models, and an understanding of how environmental commodities markets regulate polluting industries and provide incentives for encouraging desired behaviors. Students will also investigate the credibility of “non-financial metrics” that often accompany sustainability efforts.

This course is designed to explore the large-scale transition to a low-carbon economy through several distinct vantage points, including emerging environmental markets, new businesses and industries positioned to capitalize on perceived market opportunities in addressing environmental and other national priorities, and the effects of changing energy and climate change policies on prevailing social norms.

By the end of the course, students should have a basic understanding of how emerging environmental markets currently function and may be expected to function in the future. In addition, students will understand how such markets are designed and regulated to achieve policy objectives. Students should also gain an understanding of who the “players” are in new businesses and industries affecting change in this space and for their own view of their likelihood of success. In addition—students should come away with an understanding of the main drivers of policy initiatives—including the underlying politics—that have shaped the environmental financé field to date and what drivers are influencing the current debate at the federal, state, and local levels. Appreciating the issues at the intersection of markets, commercial interests, and policy should prepare students to pursue further scholarship in related areas and equip them with an understanding of the dynamics and players that will serve them well in pursuing work professionally in the environmental finance industry, or in related commercial, governmental, and not-for-profit organizations.

Back to Top

SUMA K4200. Integrative Capstone Workshop in Sustainability Management. 3 pts.

Description

The capstone course is a client-based workshop that will integrate each element of the curriculum into an applied project, giving students hands-on sustainability management experience. Workshop projects are necessary and appropriate elements of a balanced professional degree program. In this course students will learn how others manage programs and conduct analysis; they will apply what they have learned in the introductory course and other curricular areas to projects with real-world clients. Students will serve on teams and undertake a special analytic project and serve as consultants for public and nonprofit agencies, and therefore increase their understanding of the real-world constraints under which sustainability managers operate. The workshop also serves the purpose of sharpening the students analytical and communication skills, by allowing them to apply their previous experience and knowledge gained from the program to real-world problems. The required outputs for the workshop are a project control plan (PCP), a midterm briefing to the class, a final briefing to the class and the client, and a final report. The specific form of the report generated by each project is negotiated between the agency, the faculty advisor and the members of each consulting team. This course will be offered in the spring and will be taught by Louise Rosen. Starting in 2011 it will be offered in multiple sections in both the fall and spring semesters.

Back to Top

SUMA K4205. Geographic Information Session (GIS) for Sustainability Management. 3 pts.

Description

Geographic Information Systems (GIS) are a system of computer software, data and analysis methods used to create, store, manage, digital information that allow us to create maps and dynamic models to analyze the physical and social processes of the world. This course is designed to provide students with a comprehensive overview of theoretical concepts underlying GIS systems and to give students a strong set of practical skills to use GIS for stainable development research. Through a mixture of lectures, readings, focused discussions, and hands-on exercises, students will acquire an understanding of the variety and structure of spatial data and databases, gain knowledge of the principles behind raster and vector based spatial analysis, and learn basic cartographic principles for producing maps that effectively communicate a message. Students will also learn to use newly emerging web based mapping tools such as Google Earth, Google Maps and similar tools to develop online interactive maps and graphics. The use of other geospatial technologies such as Remote Sensing and the Global Positioning System will also be explored in this class. Case studies examined in class will draw examples from a wide range of GIS applications developed to assist in the design, implementation and evaluation of sustainable development projects and programs. This course satisfies the M.S. in Sustainability Management program's quantitative analysis curriculum area requirement.

Back to Top

SUMA K4230. The Earth’s Climate System. 3 pts.

Description

This course examines the fundamental physical processes that control the primary features and patterns of variability of the Earth’s climate system. Specific topics include energy balance and the greenhouse effect, the circulation of the oceans and atmosphere, land surface interactions and feedbacks, the role of the biosphere and cryosphere, paleoclimatoloy, climate modeling, and global and regional patterns of climate variability and change observed and expected as a consequence of anthropogenic influences.

The goal of the course is to provide students with the opportunity to gain a fundamental understanding of the processes that give rise to observed climate variability at a range of temporal and spatial scales. Students will develop the quantitative skills and knowledge to allow them to independently evaluate scientific claims about the state and behavior of Earth’s climate system in the past, present and future. The course includes case study modules that integrate an understanding of the physical processes and important feedbacks in the context of policy- and management-relevant aspects of current and future climate change.

Back to Top

SUMA K4235. The Science of Urban Ecology. 3 pts.

Description

Urban ecology is the study of both the interactions between organisms in an urban environment and the organisms' interactions with that environment. This course facilitates learning about 1) basic principles related to ecological interactions of life on Earth, 2) the causes and consequences of biological patterns and processes in urban environments, and 3) how ecology can inform land use decisions and applied management strategies of natural resources (e.g. water, air, biodiversity), particularly in urban environments.

This course aims to provide students with an understanding of the ways in which ecological perspectives can contribute to an interdisciplinary approach to solving environmental problems facing human society. Towards that end, this course covers topics ranging from applied ecology and conservation biology to sustainable development. It uses a cross disciplinary approach to understand the nature of ecology and biological conservation, as well as the social, philosophical and economic dimensions of land use strategies. Although in some ways cities may seem to be isolated from what we would otherwise call "nature," they are not, and this is a major theme of this course. This course includes discussion of biodiversity, ecosystem function, evolutionary processes, nutrient cycling, and natural resource availability in cities.

Students will acquire an understanding of the ecology of human-dominated landscapes, the theory and study of urban ecology, and the application of ecological principles to building sustainable urban communities. Students will also explore timely and important urban ecology issues including ecological restoration, invasive species, and biodiversity conservation.

Back to Top

SUMA K4260. Dynamics of Energy Efficiency. 3 pts.

Description

Responsible resource management represents the cornerstone of any sustainability initiative. Because the generation and distribution of energy has a profound, continuous, and global impact on natural resources, energy issues tend to be the fulcrum upon which sustainability programs hinge. The ability to identify and articulate organizational upside from energy savings tied to efficiency and renewable energy projects, is a required skill-set for successful future managers of sustainability initiatives.

This physical dimensions course will provide real-world information on energy management issues from a practitioner’s perspective. The course will focus on four core dynamics of energy efficiency—physical, management, financial and regulatory. These dynamics provide a context through which to understand various aspects of the field of energy management while also providing a framework to guide energy-related decision making. First, students will learn the underpinnings of the physical phenomena at play in building energy consumption. The management/administrative dynamic will focus on the quantification and expression of those physical phenomena. Through data analysis, improvements to building energy use can be pursued. Once improvements are identified the question of how to pay for them arises. This is the focus of the financial dynamic. Finally, students will learn the current regulatory and policy framework surrounding efficiency, through which performance standards for building systems are mandated and incentives to industry leaders who make the decision to exceed those standards are provided.

Best practice in energy management will always involve some level of complex engineering to survey existing conditions and predict energy savings from various improvement options. Sustainability managers need to understand how to manage that analysis and translate the opportunity it reveals to decision makers within their organization. The most successful sustainability managers leverage outside funds to pay for their energy saving projects. This course is intended to provide students with tools that will enable them to do just that.

Back to Top

SUMA K4301. International Environmental Law. 3 pts.

Description

Public policy decisions made on the international level shape how sovereign governments and multinational corporations manage the man-made and natural environments. Sustainability practitioners must be able to understand global environmental issues and their effects on what they are charged to do. This course will provide students with an understanding of international environmental policy design and the resulting body of law in order to strengthen their ability to understand, interpret, and react to future developments in the sustainability management arena. This is not a comprehensive survey of international environmental law. After grounding in the history and foundational concepts of international environmental law and governance, students will explore competing policy shapers and the relevant law in the areas of stratospheric ozone protection, climate change, chemicals and waste management, biodiversity and forest conservation. The course will finish with a discussion of corporate standards and extraterritorial application of US environmental law.

Back to Top

SUMA K4700. Ethics and Values for Sustainability Management. 3 pts.

Description

Although we are all more or less familiar with ethics, we are not apt to be familiar with important concentric arenas of ethical concern integral to sustainability management. Extending to global matters yet necessarily depending upon individual human actors, sustainability management can be seen to span several kinds of management. Each of these entails a cluster of ethical concerns. In this course, six kinds of management spanned by sustainability management are identified, including three recurrent in the field of environmental ethics and three in the field of administrative, including business ethics. The former are global management, ecosystem management, and regional management; and the latter are organizational management, workplace management, and personal management. Involving all these, sustainability management also involves their distinct ethical concerns.

The course is divided into six sections in which the distinct ethical concerns are addressed. The first section covers eco-justice; the second, bio-cultural conflict; the third, regional equity; the fourth, institutional dissonance; the fifth, workplace corruptibility, and the sixth, personal character. Among the course readings are numerous relevant cases in which the outcomes are significantly shaped—or misshaped—by one or another ethical concern. Yet as a whole and certainly in all macro-cases, including climate change and global toxicity, sustainability management can be seen to be vitalized or devitalized depending upon the operability of ethics in its various arenas.

While sustainability management entails knowledge and application of complex environmental measurement tools and environmental science, the efficacy of these in yielding human and environmental benefit depends upon ethical evaluations of need, use and harm, and upon concomitant ethical practice at all levels of management. Close familiarity with relevant ethical expectations, problems and possibilities will promote, enable and enhance the efforts of sustainability managers to achieve beneficial human and environmental outcomes.

Back to Top

SUMA K4720. Policy and Legal Context of Sustainability Management. 3 pts.

Description

Public policy shapes how the man-made and natural environments are managed and regulated. Sustainability practitioners must be able to understand public policy and its effects on what they are charged to do. This course will provide students with an understanding of environmental sustainability policy and the resulting law and regulations in order to strengthen their ability to understand, interpret, and react to future developments.

This is not a comprehensive dissertation on environmental law. After a grounding in the foundational concepts of environmental law and a review of a framework for understanding environmental sustainability policy, students will explore competing policy shapers and the relevant law in the areas of municipal and hazardous waste management, climate change, and product stewardship. The student will learn how the existing and evolving judicial, statutory, and regulatory environment influences an organization’s approach to managing sustainability issues.

Back to Top

SUMA K4734.  Earth Institute Practicum.  3 pts.

Description

This elective course highlights the way the mission of the Earth Institute is fulfilled through its different centers and programs. With 850 scientists, postdoctoral fellows and students working in and across more than 30 Columbia University research centers and programs, the Earth Institute is helping to advance nine interconnected global issues: water; climate and society; energy; urbanization; hazards and risk; global health; poverty; ecosystems health and monitoring; and food, ecology and nutrition. The practicum gives students the opportunity to discuss the ground-breaking work of the Earth Institute’s centers and programs with their directors, researchers and leaders in the field. This course is an opportunity for students to hear firsthand from researchers working on issues of environment and sustainable development and learn about the applications of their research to finding solutions to these global issues. The practicum also provides a means through which students can receive an introduction to the multifaceted scope and mission of the Earth Institute and the ongoing research some of its faculty members are currently undertaking. Throughout the course, experts in environmental and sustainable development issues will speak to all students, and in particular to those enrolled in Earth Institute affiliated programs. This course will be offered in the fall and will be taught by Louise Rosen.

Back to Top

SUMA K7001. Water Governance. 3 pts.

Description

Water is widely recognized as the most essential natural resource for Earth’s ecosystems and human society. Yet the relationship between water and society is complex. Water is a multifaceted resource that is important to all economic sectors and across a range of spatial scales from local to global. Water is also frequently a hazard; flooding, droughts, and contaminated water are formidable threats to human well-being. To deal with this seemingly dual nature of water, people have long modified the water cycle through engineering schemes like dams, reservoirs, irrigation systems, and interbasin transfer systems as well as through land use and land-cover change. To even the casual observer, a clear and robust plan is needed to manage and govern water given the multitude of ongoing human activities impacting the water cycle. This course will provide an overview of the political, social, economic, and administrative systems that affect the use, development, and management of water resources. Students will be introduced to current themes that influence water governance including sustainable development, integrated water resource management, water rights and pricing, corruption, and equity for marginal groups. These themes will be explored at the local, national, and international levels to provide students with a holistic understanding of water governance issues.

The University reserves the right to withdraw or modify the courses of instruction or to change the instructors as may become necessary.