Introduction to Materials Science and Nanotechnology (CLOSED)

Level: Open to students entering grades 11 or 12 or freshman year of college in fall 2014.
Session: II, July 15-August 1, 2014
Days & Time: Monday-Friday, 9:00 AM-12:30 PM and 2:00-4:30 PM, with a ten minute break halfway through each meeting.
Instructor(s): Luis Avila and staff

At least one year of chemistry and either physics or biology, and algebra.

Related Courses:

Students interested in this course might also be interested in Intensive Seminars in Modern Chemistry.

I enjoyed the group dynamics and the labs we had to collaborate on.... I feel like I’ve experienced science in a way I have never seen before. I’ve been introduced to a new world of developments and progress, and I feel I know more of what I want to do as a career. - Haider Jamal, 2013

Course Description 

The progress of civilization is inscribed in the history of Humans and their materialsthe Stone Age, the Iron Age, and today’s Age of Plastics. Materials determine the technologies that provide protection, communication, information, construction, mechanization, agriculture, and health. Knowing why glass shatters, wood splinters, steel is tough, rubber stretches (and recovers), nylon can be drawn, and tin flattens makes possible the selection of materials for enormously different applications. Engineers are mostly successful at designing and manufacturing objects and devices, but on occasion there are catastrophic failuresbridges collapse, airplanes fall from the sky, containers leak, pipes burst, and the electrical grid goes down, leaving us cold and in the dark. And there are the annoying little failureslight bulbs burn out, clothes become permanently stained, foods spoil, and batteries die.

In this course, highly qualified students experience a hands-on introduction to materials science, engineering, and technology from the bulk properties of the solid state to the nanoscale properties of large and small molecules and single atoms. Special attention is given to nanoscale materials and devices because of their potential for defining the next generation of important materials and machines. It has been said that the nanoscale is the new frontier of science and technology.

Students investigate these worlds in a discovery environment working under the guidance of an experienced instructor and staff of assistants, research scientists, and technologists from the Columbia University National Science Foundation Materials Research Science and Engineering Center (MRSEC) and Nanoscale Science and Engineering Center (NSEC), and from industry and national laboratories. The studio classroom format integrates laboratory and lecture and encourages teaching and learning especially useful to those considering undergraduate studies in engineering and science. Students completing the Summer Session I Engineering Design and Modern Chemistry courses should find this course especially interesting and are encouraged to apply.


Luis Avila

Luis Avila is a vibrational spectroscopist and a lecturer in chemistry. He received the M.Sc. in chemical physics from Babes Bolyai University (Romania) and his Ph.D. in chemistry education from Columbia University. His current research interests include vibrational spectroscopy of materials and chemical education. He is a reviewer for the Journal of Chemical Education and the Journal of Science Education and Technology, and he has published papers and monographs on vibrational spectroscopy and authored laboratory manuals on instrumental methods and procedures.

Specific course information, such as hours and instructors, are subject to change at the discretion of the University.